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Dynamical evolution of escape probability in the presence of Sinai disorder
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The escape probability; from a sitei on a Sinai lattice is treated as a discrete dynamical evolution by
random iterations over two nonlinear maps. The maps arise in the context of a dichotomic model for Sinai
diffusion. The global dynamics exhibits intermittent behavior with a long sojourn in the vicinity of a common
fixed point of the maps. The intermittent dynamics is found to be nonchaotic. The intermittent behavior is
characterized by a laminar interval, correlation function, and power spectrum.
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Models based on random walks to study anomalous difAccordingly, Eq.(1) can be transformed to yield
fusion in systems with quenched in disorder have received
considerable attention over the past ten ygarsl7]. Of par- G iia(2)= Zp
ticular interest has been the Sinai lattj@-17], wherein the i+l 1-2qGi_1;(2)’
mean-square displacement of diffusing particle increases ul- )
tra slowly as the fourth power of the logarithm of time. Nu- Where we have made use of the convolutiGn. 4, 1(2)
merical studied16] have revealed interesting fractal mea- = Gi-1i(2)Gi,i+1(2). If we substitutez=1 into Eq.(3) we
sures associated with the fluctuations of the probabilityd®t the total probability for the particle to make a first pas-
distribution from one random realization of the Sinai lattice S2g€ fromi toi+1 in terms of that of a first passage fior
to the other. There have also been numerous studies reportedl t©0i. We denote by;=G; ;. 1(z=1) the escape prob-
[9—13 on the statistics of the first passage time from one end@Pbility from sitei to i+1. We takex, to be in the open
of a segment of sizé of a Sinai lattice to the other. The interval[0,1]. Equation(3), with z=1, provides a recursion
mean first passage tim@FPT), averaged over the Sinai for x; in terms ofx;_;, givenxy. We can interpret this as a
disorder, diverges with the system size as:)%a‘(he typical ~dynamical evolution of an initial probability, as
value, however, diverges rather slowly as eXp), signaling _ _
the emergence of a long tail in the asymptotic distribution of Xi=mif (i) + (1= 7)9(%i-), @
the MFPT. A recent numerical stud$7] has brought out the where the two nonlinear maps are given by
multifractal measures of the MFPT induced by the Sinai dis-
order. Recent studigd.8] have shown an interesting possi- p

()

bility of casting the Sinai diffusion in the context of the fo0= 1-gx’ (53
iterated function system and it is the purpose of this paper to
finish some of the unfinished tasks in this approach. q

We consider a one-dimensional lattice, with the lattice 9(x)= 1-px’ (5b)

sites labeled by the set of integdi§. The particle at site
can jump toi+1 ori—1 with probabilitiesp; andq;, re-  With the Sinai prescription that at each stage of iteration the
spectively. We have; +q;=1.{p;} constitute a set of inde- mMapf or g is chosen independently and randomly with equal
pendent random variables with a common distribution thaProbability. This is accomplished by prescribifig;} in Eq.
obeys the Sinai condition, namely, the quantitygj#g;) is of (4) to be a set of identically distributed independent random
zero mean and finite variance. We consider a binary modejariables with eachy; taking a value of zero or one with
for the distribution and prescribe eagh to take values of equal probability. Without loss of generality we tage- 3
1+ ¢, with equal probability, where @ e< measures the +e€ andq=3—e¢, so thatp>q. Equations(4) and (5) con-
strength of the Sinai disorder. stitute an iterated function systefiFS) (see[19]) and is
LetG; ;. 1(n) denote the probability for the particle at site denoted by

: . G a In the range 0-1, the malphas a single fixed point at
ke a fi h 1 Gii . . o ;
L)Ec;)rgaaersasliztr %%isgg)itgit/eerlséﬂ; nn stepsGi,i+1(n) =y,=1. Calculating the first derivative df(x) with respect
to x at 1, we getf’(x=1)=q/p<1, which shows that the

éi i+1(n):qiéifli+l(n)+pi5n1- 1) fixed point is stable. Also, the map is contracting since
' - o _ f'(x)<1 for all 0<x<1. The second mag has two fixed
Let G; ;(z) denote the generating function corresponding tOpoints, one ak=y,=(1—1—4pq)/2p and the other ax

Gi j(n), defined as =y,=1. It is easily verified thag’(x=y;)<1 and hence
- the fixed point at 1 is unstable. The mgpx) is also con-
G‘*i(z)zz‘l 2'G, ;(n). @ tsrl?)(;éng except in a region (@\pq)/p<x<1, where the
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FIG. 2. Laminar intervall versus its probability distribution
" P(l) for e=0.3.
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0 1000 2000 3000 =g/p andg’(1)=p/q. Using the fact thak,=1 is a com-
mon fixed point for botif andg, we get
FIG. 1. Sample trajectories for the Sinai problem faj e —1y— N—2L
=0.3 and (b) €=0.49 and with an infinitesimal absorption Sxp=1)=(p/a) ’ @)
=10% whereL is a random variable having a binomial distribution

with meanN/2. The average value &(x,=1) is given by
g’ (x) is greater than unity. The asymptotic global dynamics
is confined to the intervaly(; ,y,), constituting the compact
metric support for the IFSF. Though each of the two maps
has one distinct and stable fixed point, random iterations ren-
der the trajectory wander endlessly in the interjmi,1] Thus an initial difference of, increases on the average ex-
without ever letting it reach the fixed points. ponentially withN and the exponent characterizing this di-

We carry out Monte Carlo simulation of E(f) by select- ~ vergence is given by

ing first xo from a uniform distribution between, andy.,. la+a/
We then calculat&, ,x,,..., iteratively employmg a string of A1(Xo) = m[M} >0. (9)
random numberg #;}. All the calculations reported here 2
have been performed in standard double precision arithmeti
Figure 1 depict sample dynamical trajectories §er0.3 and
0.49. The trajectory exhibits intermittent behavi@0-22,
with a long sojourn in the vicinity of unity foe=0.3. The
plot of x,, versusn in Fig. 1(a) for e=0.3 indicates that the )\Z(xo):< >In(p/q)=0,
laminar period is 1. Wher is increased the laminar region N N
decreases and the duration of irregular bursts increases. The (10

evolution becomes hlghly .|rregular fosrlz 0.49[Fig. 1(b)]. indicating that the dynamics is marginally stable in the vi-
To understand the intermittent behavior let us look at thebinity of the upper fixed point, at 1. We contend that the
nature of th_e dynamics in the vicinity of the upper fixed pomtexponent)\l describes the stability of the average dynamics
atx=1. This can be done analytically as follows. and the exponenk, describes that of a typical dynamical
Letxy(xXo) denote the value of afterN random iterations  yyajectory. The picture that emerges from the above discus-
over the map$ andg starting fromx,. Thereisatotal of 2 gjon s that the dynamical trajectory spends considerable
possible dynamical trajectories emanating fregy leading  time in the vicinity of the upper fixed point sinde,=0;
to different values ofxy(xo). Let us consider trajectories powever, in the long run, the trajectory is bound to move out
emanating from a point infinitesimally close i@ and get  gjnce) ,>0. After spending a relatively short time away, the

p/q+a/p|™

: ®

(S(xo=1))=

%)n the other hand, if we first take the logarithm of the slope
S(Xo=1) and then take the average, we get

In[S(x0=1)]> _<N—2L

Xn(Xo+ &o). Let £(N) =xn(Xo+ €0) —Xn(Xo). We have trajectory returns to the vicinity of the upper fixed point. This
process repeats and we get intermittent behavior, as shown in
E(N) = £0S(x) + O(£D), ()  Figs: 1a and 1b).

Recently, Loreteet al.[23] studied a logistic map by con-
sidering the Perron-Frobenius operator where the control pa-
where S(x) denotes the first derivative ofy(Xy) with re-  rameter is switched randomly into one of the two chosen
spect toxy. We are interested in investigating the nature ofvalues. In the map4) the random choice df andg plays the
dynamical system in the vicinity afy=1. We havef’(1) role of stochastic noise source.
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FIG. 3. The dots show the average laminar intef¥aland the
solid line is the best straight line fit.

To analyze the intermittency behavior we studied scaling
of an average laminar interval witly probability function, o~
and power spectrum. In the intermittency region, the time :3/
series consists of regular laminar motion interrupted by ir- ()
regular bursts. The laminar motion between successiv '®)
bursts has different durations that are randomly distribute: o
over the time series. The set;(1,X;1+2,....X+p) is called 3
the laminar interval21] if |x;—x.| and |X;,n+1—X are
both greater than a preassumed gate valaed |x; . ;— X|
<4, j=1,2,..n, wherex, is the fixed point around which
slow passage of the iterates occurs. In the present analys -10
X.=1 andéis fixed as 102. In Fig. 2 we plotted the prob- -4 -3 -2 -1 0
ability distribution P(I) for €=0.3. We found P(l) Log )
~3.66 exp(-3.42l1). The variation of average laminar 1O
length(l} with € is also studied. For a givesnivalue the map
is iterated and 5000 laminar intervd|sare calculated. Then . . .
the average laminar length is obtained. Figure 3 depicts the FI?' S Power SpeCtrum_Of trajectories fi@ €=0.15 showing
L . a 1= dependence ang) e=0.49 showing a W dependence.
variation of the average numbél) with € on a logy-logo

plot. The dots are the numerical result and continuous line i, least-squares straight-line fit. The calculaiédscales as

(IY~11.84¢ 185 For the map(4) one expect§21] (I) to
10 scale as~ e 2.

Cc(7T) The autocorrelation function

N
o C(”:(”N)El (X = (X)) (X + 7= (X)),

- where
\

N
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FIG. 4. Correlation function of the mag}). The continuous
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curve and dots corresponds ¢e- 0.15 and 0.49, respectively.

obtained for two values of, are shown in Fig. 4. These were
normalized so thatC(0)=1. The continuous and dotted
curves correspond te=0.15 and 0.49, respectively. From
Fig. 4 it is clear that as increases the correlation length
characteristic of the decay decreases.

A power spectrum is also computed for twovalues,
namely, e=0.15 and 0.49. Foe=0.15 bursts occur occa-
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sionally, whereas foe=0.49 irregular bursts are found to In summary, we have shown that anomalous diffusion on
occur very often. A different scaling behavior of the powera Sinai lattice can be studied within the framework of an
spectrumS(w) is found for these two distinct evolutions. iterated function system. The dynamics exhibits an extrinsic
The numerically computed power spectrum is displayed irtype of intermittency.

Fig. 5. Fore=0.15 the power spectrum has an approximate

1?2 dependence. On the other hand, ée¥0.49 the power S.R. expresses his gratitude to Indian National Science
spectrum scales &&w)~ 1/w. Academy for financial support.
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