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Dynamical evolution of escape probability in the presence of Sinai disorder
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The escape probabilityxi from a sitei on a Sinai lattice is treated as a discrete dynamical evolution by
random iterations over two nonlinear maps. The maps arise in the context of a dichotomic model for Sinai
diffusion. The global dynamics exhibits intermittent behavior with a long sojourn in the vicinity of a common
fixed point of the maps. The intermittent dynamics is found to be nonchaotic. The intermittent behavior is
characterized by a laminar interval, correlation function, and power spectrum.
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Models based on random walks to study anomalous
fusion in systems with quenched in disorder have recei
considerable attention over the past ten years@1–17#. Of par-
ticular interest has been the Sinai lattice@8–17#, wherein the
mean-square displacement of diffusing particle increases
tra slowly as the fourth power of the logarithm of time. N
merical studies@16# have revealed interesting fractal me
sures associated with the fluctuations of the probab
distribution from one random realization of the Sinai latti
to the other. There have also been numerous studies rep
@9–13# on the statistics of the first passage time from one
of a segment of sizeL of a Sinai lattice to the other. Th
mean first passage time~MFPT!, averaged over the Sina
disorder, diverges with the system size as exp(L). The typical
value, however, diverges rather slowly as exp(AL), signaling
the emergence of a long tail in the asymptotic distribution
the MFPT. A recent numerical study@17# has brought out the
multifractal measures of the MFPT induced by the Sinai d
order. Recent studies@18# have shown an interesting poss
bility of casting the Sinai diffusion in the context of th
iterated function system and it is the purpose of this pape
finish some of the unfinished tasks in this approach.

We consider a one-dimensional lattice, with the latt
sites labeled by the set of integers$ i %. The particle at sitei
can jump toi 11 or i 21 with probabilitiespi and qi , re-
spectively. We havepi1qi51. $pi% constitute a set of inde
pendent random variables with a common distribution t
obeys the Sinai condition, namely, the quantity ln(qi /pi) is of
zero mean and finite variance. We consider a binary mo
for the distribution and prescribe eachpi to take values of
1
2 6e, with equal probability, where 0,e, 1

2 measures the
strength of the Sinai disorder.

Let Ĝi ,i 11(n) denote the probability for the particle at si
i to make a first passage to the sitei 11 in n steps.Ĝi ,i 11(n)
obeys a master equation given by

Ĝi ,i 11~n!5qiĜi 21,i 11~n!1pidn,1 . ~1!

Let Gi , j (z) denote the generating function corresponding
Ĝi , j (n), defined as

Gi , j~z!5 (
n51

`

znĜi , j~n!. ~2!
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Accordingly, Eq.~1! can be transformed to yield

Gi ,i 11~z!5
zpi

12zqiGi 21,i~z!
, ~3!

where we have made use of the convolutionGi 21,i 11(z)
5Gi 21,i(z)Gi ,i 11(z). If we substitutez51 into Eq. ~3! we
get the total probability for the particle to make a first pa
sage fromi to i 11 in terms of that of a first passage fori
21 to i . We denote byxi5Gi ,i 11(z51) the escape prob
ability from site i to i 11. We takex0 to be in the open
interval @0,1#. Equation~3!, with z51, provides a recursion
for xi in terms ofxi 21 , givenx0 . We can interpret this as a
dynamical evolution of an initial probabilityx0 as

xi5h i f ~xi 21!1~12h i !g~xi 21!, ~4!

where the two nonlinear maps are given by

f ~x!5
p

12qx
, ~5a!

g~x!5
q

12px
, ~5b!

with the Sinai prescription that at each stage of iteration
map f or g is chosen independently and randomly with equ
probability. This is accomplished by prescribing$h i% in Eq.
~4! to be a set of identically distributed independent rand
variables with eachh i taking a value of zero or one with
equal probability. Without loss of generality we takep5 1

2

1e andq5 1
2 2e, so thatp.q. Equations~4! and ~5! con-

stitute an iterated function system~IFS! ~see @19#! and is
denoted byF.

In the range 0–1, the mapf has a single fixed point atx
5y251. Calculating the first derivative off (x) with respect
to x at 1, we getf 8(x51)5q/p,1, which shows that the
fixed point is stable. Also, the map is contracting sin
f 8(x),1 for all 0,x,1. The second mapg has two fixed
points, one atx5y15(12A124pq)/2p and the other atx
5y251. It is easily verified thatg8(x5y1),1 and hence
the fixed point at 1 is unstable. The mapg(x) is also con-
tracting except in a region (12Apq)/p,x<1, where the
slope
1315 © 1998 The American Physical Society
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g8(x) is greater than unity. The asymptotic global dynami
is confined to the interval (y1 ,y2), constituting the compact
metric support for the IFSF. Though each of the two map
has one distinct and stable fixed point, random iterations r
der the trajectory wander endlessly in the interval@y1,1#
without ever letting it reach the fixed points.

We carry out Monte Carlo simulation of Eq.~4! by select-
ing first x0 from a uniform distribution betweeny1 andy2 .
We then calculatex1 ,x2 ,..., iteratively employing a string of
random numbers$h i%. All the calculations reported here
have been performed in standard double precision arithme
Figure 1 depict sample dynamical trajectories fore50.3 and
0.49. The trajectory exhibits intermittent behavior@20–22#,
with a long sojourn in the vicinity of unity fore50.3. The
plot of xn versusn in Fig. 1~a! for e50.3 indicates that the
laminar period is 1. Whene is increased the laminar region
decreases and the duration of irregular bursts increases.
evolution becomes highly irregular fore50.49 @Fig. 1~b!#.
To understand the intermittent behavior let us look at t
nature of the dynamics in the vicinity of the upper fixed poi
at x51. This can be done analytically as follows.

Let xN(x0) denote the value ofx afterN random iterations
over the mapsf andg starting fromx0 . There is a total of 2N

possible dynamical trajectories emanating fromx0 , leading
to different values ofxN(x0). Let us consider trajectories
emanating from a point infinitesimally close tox0 and get
xN(x01j0). Let j(N)5xN(x01j0)2xN(x0). We have

j~N!5j0S~x0!1O~j0
2!, ~6!

whereS(x0) denotes the first derivative ofxN(x0) with re-
spect tox0 . We are interested in investigating the nature
dynamical system in the vicinity ofx051. We havef 8(1)

FIG. 1. Sample trajectories for the Sinai problem for~a! e
50.3 and ~b! e50.49 and with an infinitesimal absorptiong
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5q/p and g8(1)5p/q. Using the fact thatx051 is a com-
mon fixed point for bothf andg, we get

S~x051!5~p/q!N22L, ~7!

whereL is a random variable having a binomial distributio
with meanN/2. The average value ofS(x051) is given by

^S~x051!&5Fp/q1q/p

2 GN

. ~8!

Thus an initial difference ofj0 increases on the average e
ponentially withN and the exponent characterizing this d
vergence is given by

l1~x0!5 lnFp/q1q/p

2 G.0. ~9!

On the other hand, if we first take the logarithm of the slo
S(x051) and then take the average, we get

l2~x0!5 K ln@S~x051!#

N L 5 K N22L

N L ln~p/q!50,

~10!

indicating that the dynamics is marginally stable in the
cinity of the upper fixed point, at 1. We contend that t
exponentl1 describes the stability of the average dynam
and the exponentl2 describes that of a typical dynamica
trajectory. The picture that emerges from the above disc
sion is that the dynamical trajectory spends considera
time in the vicinity of the upper fixed point sincel250;
however, in the long run, the trajectory is bound to move
sincel1.0. After spending a relatively short time away, th
trajectory returns to the vicinity of the upper fixed point. Th
process repeats and we get intermittent behavior, as show
Figs. 1~a! and 1~b!.

Recently, Loretoet al. @23# studied a logistic map by con
sidering the Perron-Frobenius operator where the control
rameter is switched randomly into one of the two chos
values. In the map~4! the random choice off andg plays the
role of stochastic noise source.

FIG. 2. Laminar intervall versus its probability distribution
P( l ) for e50.3.



n

ir
iv
e

y

th

57 1317DYNAMICAL EVOLUTION OF ESCAPE PROBABILITY . . .
To analyze the intermittency behavior we studied scali
of an average laminar interval withe, probability function,
and power spectrum. In the intermittency region, the tim
series consists of regular laminar motion interrupted by
regular bursts. The laminar motion between success
bursts has different durations that are randomly distribut
over the time series. The set (xi 11 ,xi 12 ,...,xi 1n) is called
the laminar interval@21# if uxi2xcu and uxi 1n112xcu are
both greater than a preassumed gate valued and uxi 1 j2xcu
,d, j 51,2,...,n, wherexc is the fixed point around which
slow passage of the iterates occurs. In the present anal
xc51 andd is fixed as 1022. In Fig. 2 we plotted the prob-
ability distribution P( l ) for e50.3. We found P( l )
'3.66 exp(23.42e l ). The variation of average laminar
length^ l & with e is also studied. For a givene value the map
is iterated and 5000 laminar intervalsl i are calculated. Then
the average laminar length is obtained. Figure 3 depicts
variation of the average number^ l & with e on a log10-log10
plot. The dots are the numerical result and continuous line

FIG. 3. The dots show the average laminar interval^ l & and the
solid line is the best straight line fit.

FIG. 4. Correlation function of the map~4!. The continuous
curve and dots corresponds toe50.15 and 0.49, respectively.
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isthe least-squares straight-line fit. The calculated^ l & scales as
^ l &'11.84e21.85. For the map~4! one expects@21# ^ l & to
scale as;e22.

The autocorrelation function

C~t!5~1/N!(
i 51

N

~xi2^x&!~xi 1t2^x&!,

where

^x&5~1/N!(
j 51

N

xj ,

obtained for two values ofe, are shown in Fig. 4. These were
normalized so thatC(0)51. The continuous and dotted
curves correspond toe50.15 and 0.49, respectively. From
Fig. 4 it is clear that ase increases the correlation length
characteristic of the decay decreases.

A power spectrum is also computed for twoe values,
namely,e50.15 and 0.49. Fore50.15 bursts occur occa-

FIG. 5. Power spectrum of trajectories for~a! e50.15 showing
a 1/w2 dependence and~b! e50.49 showing a 1/w dependence.
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sionally, whereas fore50.49 irregular bursts are found t
occur very often. A different scaling behavior of the pow
spectrumS(w) is found for these two distinct evolutions
The numerically computed power spectrum is displayed
Fig. 5. Fore50.15 the power spectrum has an approxim
1/w2 dependence. On the other hand, fore50.49 the power
spectrum scales asS(w);1/w.
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In summary, we have shown that anomalous diffusion
a Sinai lattice can be studied within the framework of
iterated function system. The dynamics exhibits an extrin
type of intermittency.
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